

## MARSHIP engineering

## **ENVIROCLEANSE** inTank™ BWTS

A solution for high ballast dependent vessels









### **AGENDA**

- □ ENVIROCLEANSE LLc Mr. Bobby Waid
- ☐ COMMON ASPECTS OF FULL TA BWT SYSTEMS
- ☐ THE INTANK BALLAST WATER SOLUTION
- ☐ InTANK VERSUS INLINE TREATMENT
- **□ Q&A**

#### INTRO BY MR. BOBBY WAID

- I. ENVIROCLEANSE BACKGROUND
  - 1) Charter Brokerage
  - 2) The Berkshire Hathaway Connection
  - 3) Mission Statement: The mission of Envirocleanse is to provide a superior ballast water treatment system that assists companies around the world to perform at the highest safety, compliance and reliability standards without impacting cargo operations.



II. WHY WILL WE BE AROUND IN 20 YEARS?

## **KEY MILESTONES**

- 2007: Envirocleanse LLc founded: disinfection of industrial process water via EC-activation technology:
  - Applications : oil & gas fracking, medical and food industries
  - Large installed base of Hypochlorite generators Offshore & landbased
- □ 2016: Developed design in principle for ballast water treatment
  - Engineering design partner Glosten Marine engineering
  - Patented inTank nozzle & metric C/T value
- 2017: Testing, Product detail marine design, Testing & Pilot ship
  - DNV\_GL selected as our IL under Norwegian Flag
  - Selected Golden Bear (USA) accredited Test Facility for LB/SB
  - Successfully installed inTank pilot system on Capesize : incl. treatment of 22.000 m³ cargo hold

## **KEY MILESTONES – 2018/2019**

☐ January : LB/SB testing completed for both USCG and IMO

☐ July : Application submitted to USCG for type approval

October : IMO grants final approval for EC Variation MEPC 73

■ November : GESAMP no objections for BC Variation -> MEPC 74

☐ January 2019 : USCG application review fully completed

□ April 2019 : Planned final approval for Liquid Bulk Variation

## SHIPOWNERS QUOTES

"... NONE OF THE SYSTEMS SOLVE THE CRITTER PROBLEM WITHOUT A COMPROMISE TO MY OPERATIONS"

" ...I'M WAITING, THE PROBLEM IS ... I'M STUCK WITH FILTERS"

"...IN MISSISSIPPI IT IS NOT POSSIBLE TO FILTER WITHOUT DELAYING THE CARGO OPERATIONS.

"...ALL SYSTEMS SO FAR ARE OPTIMISED TO TREAT FLOW AT THE WORST POSSIBLE MOMENT AND PLACE ..."



#### **KEY DRIVERS FOR CARGO SHIPS**

- ☐ TIME & TIMING IS CRITICAL [LT CHARTERS SPOT] (US\$)
- ☐ CONTINGENCY PLANNING (... PLAN B,C)
- ☐ FLEXIBILITY (OR LIBERTY TO ACT, NO RESTICTIONS)
- ☐ REDUNDANCY (SHOW MUST GO ON)
- ☐ RISK AVERSION (TIME / SAFETY / SHIP STABILITY)

#### ABILITY TO BALLAST AND DEBALLAST AS REQUIRED





## TA: 10 YEARS BWT INDUSTRY TECHNOLOGY ...

| Maker           | Model          | Principle         | Capacity                      | Vessel status | Design Metric  | Hold T          | PSU, Temp or UV-i                                                     | Other limit:         |
|-----------------|----------------|-------------------|-------------------------------|---------------|----------------|-----------------|-----------------------------------------------------------------------|----------------------|
| Optimarin       | OBS/OBS Ex     | Filt. + UV        | 167 – 3,000 m <sub>3</sub> /h | Alongside     | Pump flow rate | 72              | UV-i > 600W/m²                                                        |                      |
| Alfa Laval      | PureBallast 3  | Filt.+ UV         | 150 – 3,000 m <sub>3</sub> /h | Alongside     | Pump flow rate | 72              | UV-i > 820 W/m²                                                       |                      |
| TeamTec         | OceanSaver     | Filt.+ EC (dia)   | 200 – 7,200 m₃/h              | Alongside     | Pump flow rate | 0               | PSU>20, T>17                                                          | TRO: 1.7 mg/L        |
| Sunrui          | BalClor        | Filt.+ EC         | 50 – 8,500 m₃/h               | Alongside     | Pump flow rate | 0               | PSU>15, T>5                                                           | TRO: 7.5 mg/L        |
| Ecochlor, Inc.  | Ecochlor       | Filt. + Chem. Inj | 500 – 16,200 m₃/h             | Alongside     | Pump flow rate | 24              |                                                                       | Act.dose: 4.25 mg/L  |
| Erma First      | Erma First FIT | Filt.+ EC         | 100 – 3,740 m <sub>3</sub> /h | Alongside     | Pump flow rate | 0               | PSU>0.9, T>-2                                                         | TRO: 6 mg/L          |
| Techcross, Inc. | Electro-Cleen  | EC                | 150 − 12,000 m₃/h             | Alongside     | Pump flow rate | 120             | PSU > 1.5                                                             | TRO: 9 mg/L          |
| SHI             | Purimar        | Filt.+ EC         | 250 – 10,000 m₃/h             | Alongside     | Pump flow rate | 24              | PSU>10, 4 <t<40< td=""><td>TRO: 2.5 – 3.0 mg/L</td></t<40<>           | TRO: 2.5 – 3.0 mg/L  |
| Bio-UV Group    | Bio-Sea        | Filt. + UV        | 55 – 1,400 m <sub>3</sub> /h  | Alongside     | Pump flow rate | 0, 24, 72       | UV-i> 690 W/m²                                                        |                      |
| Wärtsilä        | Aquarius EC    | Filt.+ EC         | 250 – 4,000 m <sub>3</sub> /h | Alongside     | Pump flow rate | 24              | PSU>15, T>15                                                          | TRO: 10 mg/L         |
| нні             | HiBallast      | Filt.+ EC         | 75 – 10,000 m₃/h              | Alongside     | Pump flow rate | 48,72           | PSU>15, T>4                                                           | TRO: 8 mg/L          |
| Headway         | OceanGuard     | Filt.+ EC         | 65 – 5,200 m <sub>3</sub> /h  | Alongside     | Pump flow rate | 24,120          | PSU>0.85                                                              | TRO: 2.0 mg/L        |
| JFE Corp.       | BallastAce     | Filt. + Chem. Inj | 500 – 3,500 m <sub>3</sub> /h | Alongside     | Pump flow rate | 24              |                                                                       | Max. dose: 20 mg/L   |
| Panasia         | GloEn-Patrol   | Filt.+ UV         | 50 – 6,000 m <sub>3</sub> /h  | Alongside     | Pump flow rate | 48              | UV-i > 600W/m²                                                        |                      |
| De Nora         | Balpure        | Filt.+ EC         | 400 – 8,570 m <sub>3</sub> /h | Alongside     | Pump flow rate | 24              | 18 <psu<36, 15<t<50<="" td=""><td>TRO range: 7-15 mg/L</td></psu<36,> | TRO range: 7-15 mg/L |
|                 |                |                   |                               |               |                | Contact<br>Time |                                                                       |                      |
| Envirocleanse   | inTank         | EC variant        | Up to 200,000 m₃              | On Voyage     | Tank Volume    | 24              | Not a limit, 0 <t<35< td=""><td>C/T Value = 120</td></t<35<>          | C/T Value = 120      |
| Envirocleanse   | inTank         | BC variant        | Up to 200,000 m₃              | On Voyage     | Tank Volume    | 24              | None                                                                  | C/T Value = 120      |



## **INLINE SYSTEM COMMON ASPECT IS THAT THEY...**

- ☐ ALL TREAT ALONGSIDE
- ☐ INTERRUPT or RESTRICT BALLAST FLOW
- REDUCE FLEXIBILITY
- INTRODUCE LIMITATIONS
- ☐ INTRODUCE COMMERICAL RISKS [...DELAY ]
- ☐ LACK A MEANS TO CONTROL BIOLOGICAL REGROWTH

### IMPLICATIONS OF INLINE DESIGN...

- MUST TREAT AT BALLAST UPTAKE (& DISCHARGE FOR UVT) or NEUTRALIZE AT DISCHARGE
- ☐ MUST **FILTER** (EXCEPT ONE MAKER)
- ☐ CONSUME ADDITIONAL **POWER IN PARRALEL WITH CARGO OPERATION**
- ☐ DIRECTLY RELATED TO BALLAST PUMP FLOW RATE
- □ "ONE SHOT TO KILL" (TWO SHOTS FOR UV-T)
- MAY RESTRICT COMMON PRACTICE OF GRAVITY DISCHARGE
- □ "ODD" TANKS ARE A TREATMENT CHALLENGE (TOPSIDES, AFT, CARGO-HOLDS)
- ☐ IMPACTFULL TO MEET eX HAZARDOUS STANDARDS (SUBMERGED PUMPS)



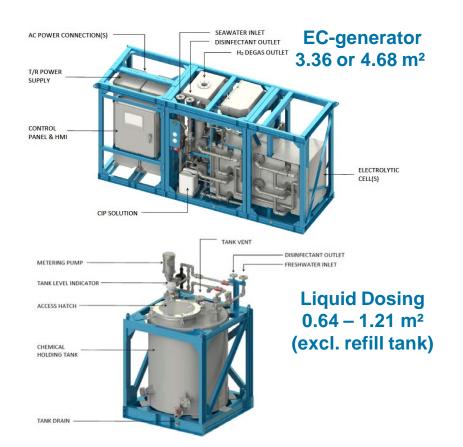
## A DIFFERENT APPROACH

Link to 3D movie via streaming:

Youtube or Vimeo or we insert the movie or we play it from USB



| SUMMARY              | inTank <sup>™</sup> | In-Line                   |
|----------------------|---------------------|---------------------------|
| Where:               | At Sea              | At Port   Terminal        |
| What:                | Tank Volume         | Flow                      |
| How:                 | Recirculation       | Full Flow / Side Stream   |
| Timing:              | Delayed / Variable  | Direct & Fixed            |
| Limiting Factors:    | Voyage Time         | Salinity ,T , UV-T, Power |
| Filters:             | None                | Required (Almost all)     |
| Port water quality:  | Targeted dose       | Under or overdose         |
| Regrowth management: | Yes                 | None (long voyages?)      |




#### THE BENEFITS OF TREATMENT IN THE TANKS AT SEA:

- ✓ NO IMPACT ON CARGO OPERATIONS
- √ NO FILTER
- ✓ FLEXIBILTY TO START TREATMENT EVENT
- ✓ COMPLETED FULL TREATMENT BEFORE NEXT PORT CALL
- ✓ TARGET TIMING AVOIDS RISK OF BIOLOGICAL REGROWTH
- ✓ ABILITY TO SCALE /SIZE SYSTEM TO OPERATIONAL PROFILE
- ✓ HIGH LEVEL OF REDUNDANCY:
  - EC GENERATED and LIQUID BULK DOSING
  - 2 PARALLEL SYSTEMS



## **INTANK COMPONENTS FOOTPRINT = MAX. 8.97 M<sup>2</sup>**





## WORLD WIDE SALES, SERVICE & PARTS NETWORK

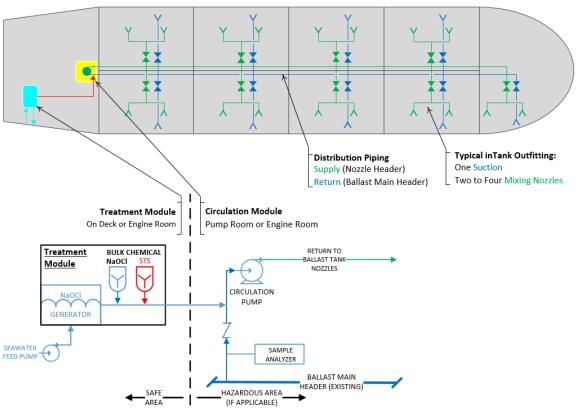


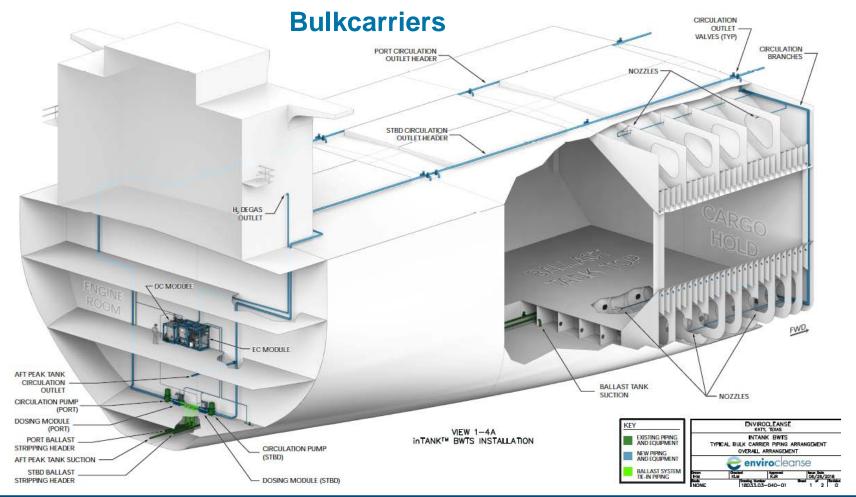
- 0 = Factory, Laramie
- 1 = Envirocleanse HQ Katy, Houston Americas U.S.A
- **2-3 = Marship Engineering**Rotterdam | Athens
  Europe
- 4 = Coffin Turbo Pumps Singapore | Malaysia
- **5 = Sam-Gong**Busan Korea
- 6 = Marine Equip
  Hong-Kong Guangzhou
  Shanghai China
- 7 = KAML Mumbai – India
- B = Pangea Marine AS Instanbul, Turkey

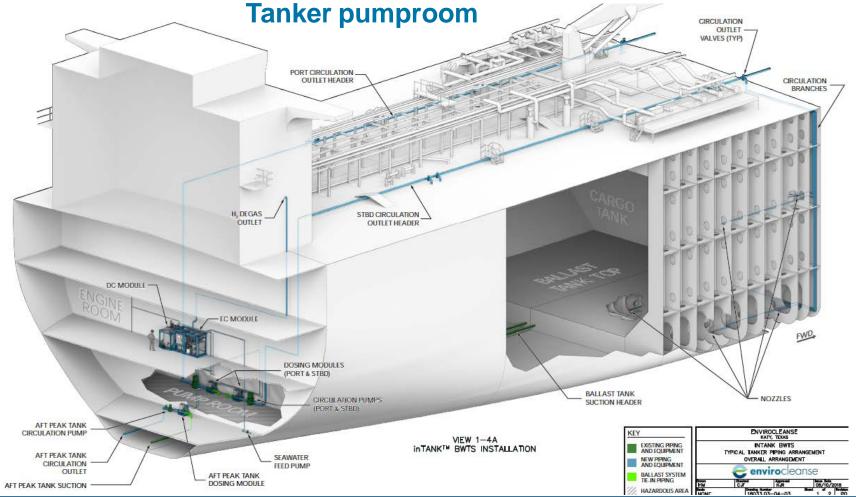


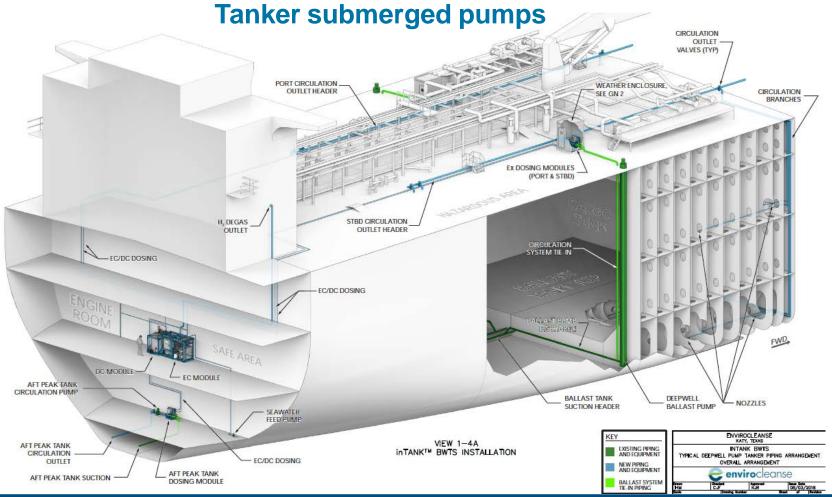
# MARSHIP engineering

## THANK YOU FOR YOUR ATTENTION



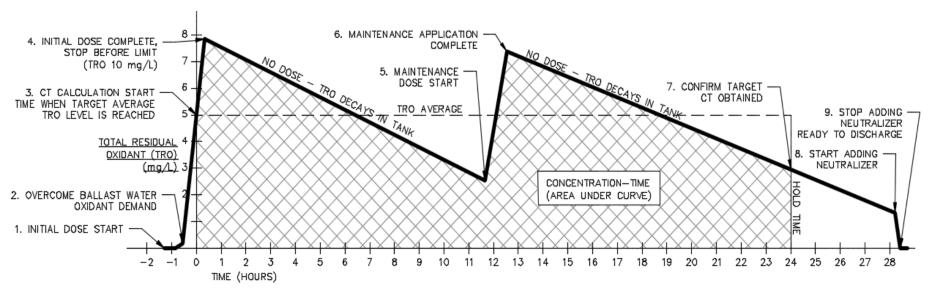





## **BACK UP SHEETS**


#### SYSTEM SIMPLIFIED SCHEMATIC OVERVIEW

#### inTank Ballast Water Treatment System










## **CONCENTRATION TIME (CT) – VALUE TARGET = 120**

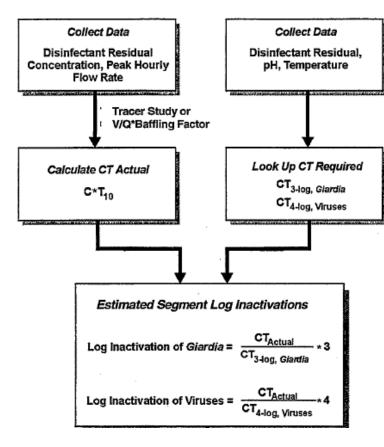
#### CT is "area under the curve"

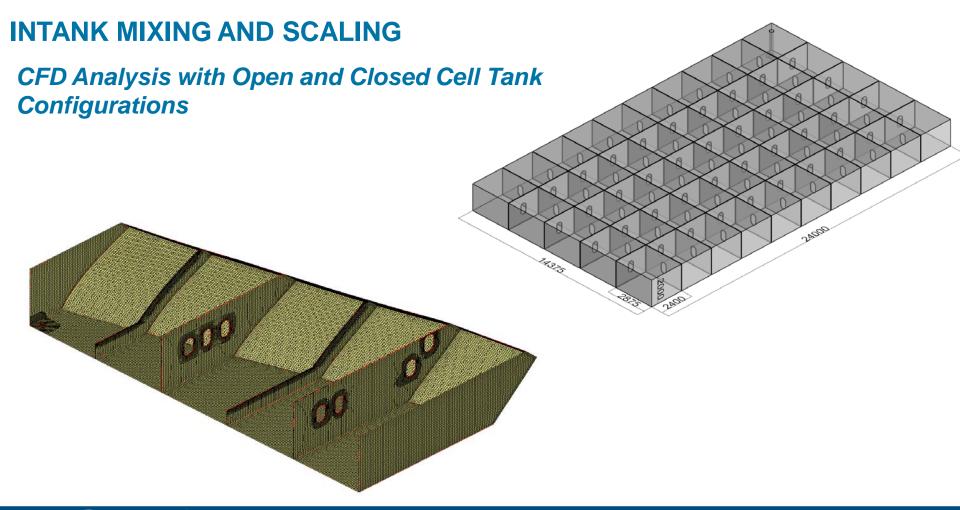


CT Value = Concentration of oxidant (in mg/ltr) x Contact time (in Hrs)

Example 1

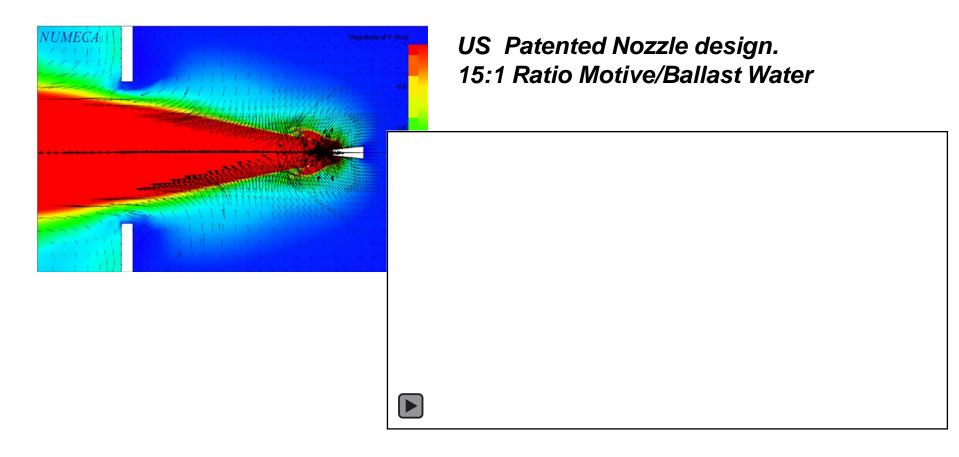
Avg. 5 ppm x 24 Hrs.


Example 2


Avg. 3 ppm x 40 Hrs.

## **CONCENTRATION TIME (CT)**

- 1. Collected Data on pH, Temperature, DBPs, Flow Rates.
  - a) Mixing efficiency
  - b) CT-required
- 2. Calculate CT-actual
  - a) Using EPA "poor" mixing factor of 0.3 for ballast tanks.
  - b) Use CFD guidance for nozzle placement.
  - c) Use Tracer Study during commissioning to confirm (if needed).
- 3. Application
  - a) Used method on pilot biological efficacy trials with success.
  - b) Using method for TA testing.


#### EPA Guidance Manual Disinfection Profiling and Benchmarking





#### **INTANK MIXING AND SCALING** WATER SOURCE -Tank 4 Port - 3 Point Diffusers, Trial 1 Normalized - Sample Ports 1.8 -B1 1.6 ■ B3 Concentration -- C2 ---- D1 - D2 Dye. 0.6 0.4 D2 Continuous E1 Continuous 0.2 Lower 10% Bound -Upper 10% Bound 0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 Time After Dosing (hh:mm)

## **INTANK MIXING AND SCALING**

